
Improving the lifecycle of robotics components using Domain-Specific
Languages

A. Romero-Garcés, L.J. Manso, M.A. Gutiérrez, R. Cintas, P. Bustos *
RoboLab, Computer and Communication Technology Deptartment,

University of Extremadura, Cáceres, Spain.
pbustos@unex.es

Abstract— There is currently a large amount of robotics soft-
ware using the component-oriented programming paradigm.
However, the rapid growth in number and complexity of com-
ponents may compromise the scalability and the whole lifecycle
of robotics software systems. Model-Driven Engineering can be
used to mitigate these problems. This paper describes how using
Domain-Specific Languages to generate and describe critical
parts of robotic systems helps developers to perform component
managerial tasks such as component creation, modification,
monitoring and deployment. Four different DSLs are proposed
in this paper: i) CDSL for specifying the structure of the compo-
nents, ii) IDSL for the description of their interfaces, iii) DDSL
for describing the deployment process of component networks
and iv) PDSL to define and configure component parameters.
Their benefits have been demonstrated after their implemen-
tation in RoboComp, a general-purpose and component-based
robotics framework. Examples of the usage of these DSLs are
shown along with experiments that demonstrate the benefits
they bring to the lifecycle of the components.

I. INTRODUCTION

Much effort has been placed in developing tools that
provide better software reusability and scalability. When
it comes to robotics software, the need for these tools is
even higher due to the multidisciplinary and heterogeneous
nature of the programs that are built. Component-oriented
programming, which to some point can be seen as an
extension of object-oriented programming, is a promising
direction towards achieving these goals. Components are
software modules -usually standalone programs- providing
an interface for interaction with other components. This
structure makes them a more autonomous and reusable
concept than classes. However, components have a lifecycle
that can become quite complex, especially in robotics envi-
ronments [1][2]. The lifecycle of a component includes all
common activities that are present during the lifecycle of any
program: requirements analysis, design, implementation, unit
testing, system integration, verification and validation, oper-
ation support, maintenance and disposal. However, due to
the ever-changing requirements typical of robotics software,
the lifecycle of robotics components is extremely active. To
help developers in these tasks, specific tools are required.

Model-Driven Engineering has proven to mitigate this
situation [3]. In particular, it is worth noting the OMGs
Model-Driven Architecture (MDA) [4]. This methodology

*This work has been partially supported by project TSI-020301-2009-
2 funded by the Spanish Government and Feder funds, by the Junta de
Extremadura projects IB10062, PRI09A037, PDT09A59 and PDT09A044

keeps the system specification (model) separated from the
system implementation. MDA models are structured by lay-
ers with different levels of abstraction. With this structure,
we can build platform-independent models (PIM) which
provide high-level designs, and platform-specific models
(PSM) which contain those elements that depend on the
final system implementation. Transformations from PIM to
PSM are described in MDA so developers can obtain their
low-level designs from high-level ones. Languages in MDA
are called meta-models and are described using a common
root meta-metamodel: the Meta Object Facility (MOF) [5].
The main advantage of MOF is that, once metamodels have
been created, developers can benefit from model to model
transformations (M2M) or model to text transformations
(M2T) to obtain source code in an automatic way.

In this paper we describe the introduction of MDAs
concepts in the design of the RoboComp robotics framework
[6]. RoboComp is a component-oriented framework built
around a component model, a communications middleware,
a repository structure and a set of tools used for develop-
ing and deploying components. After six years of steady
development, the repository holds more than one hundred
components, covering functionalities of different robotics
and artificial vision topics. However, the original design
of the framework, which is not MDA-oriented, presented
several problems related to the life-cycle of the components.
Our group has identified and tracked those issues of the
components life-cycle that where responsible for most of
non-productive developing time. These issues can be grouped
in two classes: those related to code development, and those
related to deployment. Main coding issues are the creation of
new components, addition and deletion of proxies to existing
components and modifications in the interface definitions.
Deployment issues are mainly due to wrong values in the
configuration parameters of the components and unresolved
dependencies among them. In Section III more details are
presented that justify the need for redesigning specific parts
of the RoboComp architecture.

At the end, all these issues come from the need to
manually rewrite parts of the components that could be
automatically modified. This process is readily prone to
errors if done by humans. The solution adopted was to
redesign the component model, dividing it in two different
parts: a generic one generated automatically from DSLs,
and a specific one written by the user. Four domain-specific

languages (DSLs) have been created as part of the new
design: first, a Component Description Specific Language
-CDSL- for describing the main characteristics of the com-
ponents; second, an Interface Description Specific Language
-IDSL- to specify component interfaces independently of
the underlying communications middleware; third, a Deploy-
ment Description Specific Language -DDSL- to describe the
deployment process of robotic components networks; and
finally, a Parameter Description Specific Language -PDSL-
to describe the configuration parameters and their values, that
determine the run-time behavior of the components.

The rest of the paper is organized as follows. Section II
provides an overview of the related works. Section III
introduces the RoboComp framework and why it was found
necessary to incorporate DSL technologies to it. Next, the
RoboComp Domain-Specific Languages are described in
section IV. Finally, the case study and the conclusions are
detailed in sections V and VII, respectively.

II. RELATED WORK

Software development for robots can benefit from the use
of MDA-based tools. The CoSMIC visual toolkit [7] is an
interesting example of this. It is a complete open source
MDA tool that allows the visual design, deployment and
configuration of components based on the CORBA Com-
ponent Model (CCM) [8]. However, CCM and its associated
specifications are not widely used. In spite of that, the OMG
aims at their future adoption within the robotics community
by standardizing its novel Robotic Technology Component
Specification (RTC) [9], which focuses on the structural
and behavioral features required by robotics software as a
supplement to a general component model. In this vein, it is
worth noting OpenRTM-aist [10], a free RTC implementation
that has appeared recently. OpenRTM-aist is a framework
for robotics that provides developers with a set of tools
to create and manage components. Two of these tools are
Eclipse-based GUI tools: RTBuilder and RTSystemEditor.
RTBuilder allows developers to create components defining
their names, connectors (ports), parameters, programming
language or their operating system. This tool can then
be used to automatically generate source code templates.
RTSystemEditor provides a mechanism to edit and configure
components which are registered on a known name service.
RTSystemEditor can start, stop or reset components, add and
remove links and use introspection capabilities to monitor
components at run time.

Another interesting tool is the 3-View Component Meta-
Model (V3CMM) [11]. It is a platform-independent model-
ing language for component-based applications that makes
use of MOF-based metamodels. V3CMM provides three
views that are loosely coupled and allow users to design a
complete system. With V3CMM it is possible to model the
static structure of components (named as structural view),
the behavior of these components (coordination view) and
to model the functionality of these components, described as
algorithms (algorithmic view). Two of these views are based
on UML [12]: 1) the coordination view uses a simplified

version based on UML state machines in order to model
the different states of a component and 2) the algorithmic
view, based on UML activity diagrams, executes a specific
behavior depending on the current state of the component.
The structural view is used to define components and their
dependencies by specifying both its required and provided
interfaces. Once users model the system using these three
views, it is possible to perform M2M to reduce the level of
abstraction and M2T transformations to automatically obtain
the final source code.

The SmartSoft [13] robotics framework also provides an
MDA tool based on a UML profile implementation. The
development process starts modeling an idea at a high-level
of abstraction. This model is then refined through several
transformations to obtain the software components source
code. First, developers have to describe the system in a
model independent platform (PIM) where information about
middleware, operating system, programming languages and
other properties are unknown. Then the PIM is transformed
to a platform-specific model (PSM), where details about
middleware or operating systems are specified. This PIM is
also transformed to a platform-specific implementation (PSI)
where developers can add their code and libraries. The next
step is to deploy the components. In this vein SmartSoft uses
the platform description model (PDM) to define the target
platform properties. The model is extended with this platform
information and finally the system can be run following
the specified deployment model. During the development
process users can guide the transformations in order to obtain
a specific component by selecting the desired real-time and
QoS properties of the component and the communication
middleware it will use. A set of well-defined communication
patterns provides the necessary abstraction from the final
communication model and its reference implementation. Cur-
rently, it supports the ACE [14] (SmartSoft/ACE) and ACE/-
TAO [15] (SmartSoft/CORBA) communication middlewares
and provides other interesting features, such as a mechanism
to guarantee real-time properties using an external scheduler
analyzer or dynamic wiring for components.

For many years, visual modeling tools (such as UML) have
been used to specify, design and document complete systems.
These visual paradigms are intuitive for users (analysts,
designers, etc) and are easier to understand for clients than
textual models. Despite these advantages, expert developers
on a particular domain sometimes feel more comfortable
with textual representations, that allows them to build their
models as if they were working with common programming
languages. OpenRTM, V3CMM and SmartSoft also provide
graphical tools to create and manage visual models but these
tools do not have the ability to use textual ones. Thus,
we decided to create the DSLs as textual models because
they can be automatically exchanged with visual ones (i.e.,
developers can choose at any moment how to develop their
systems, using textual or visual representations) and because
its edition can also be assisted by the DSL editor (i.e.,
pointing to syntax and semantic errors).

III. THE NEED OF DSLS IN ROBOCOMP

RoboComp is a distributed, component-oriented, tool-
enhanced, robotics framework in development since
2005 [6]. RoboComp currently holds dozens of components
spanning a hardware abstraction layer, basic navigation
skills, SLAM, visual processing algorithms, planning,
manipulator control, 3D object recognition and many others.
It is being used by several research groups and companies.
As mentioned before, components are processes with
structured interfaces [1], [2]. Each component encapsulates
a specific functionality and can communicate with others,
giving rise to complex behaviors sustained by their dynamic
interactions.

Like other robotics frameworks, RoboComp provides a
wide set of tools aimed at reducing the required effort to
perform everyday tasks, such as component creation, mod-
ification and deployment. When dealing with large graphs
of processes containing more than a few components (e.g.,
when controlling mobile manipulators endowed with ex-
pressive heads), the development team needs well designed
tools targeted at reducing the time wasted in common and
repetitive errors. By these errors we mean those made when
inserting or changing code not directly related to the behavior
of the component. To design useful tools and to improve
the underlying architecture, the first step is to identify
error-prone tasks that could be automated or assisted. We
have identified five tasks as the most error-prone and time-
consuming ones:

1) Creation of new components.
2) Adding or removing proxies to existing components.
3) Adding or changing existing data types or methods in

interface declarations.
4) Errors in configuration parameters that determine the

run-time behavior of the components.
5) Unresolved dependencies when deploying graphs of

connected components.
Although there were some tools and scripts written to

mitigate these issues, they lacked of the necessary generality
to adapt to the continuous evolution of the component
model. For instance, at some point, the model was modified
so new components implemented a generic introspection
interface. This interface is served by an internal thread that,
at start, reads and checks the configuration parameters and,
afterwards, parsimoniously monitors the execution of the
working thread. These changes in the model are difficult
to incorporate in the component creation scripts if they
are designed as simple template transformation processes.
Moreover, once a component is created, introducing changes
is even more difficult, specially when several versions of the
components coexist in the system.

Despite middleware-independency is underway [16],
RoboComp currently uses Ice [17] as its main communi-
cation middleware. Ice is an extremely robust RPC-oriented
technology that supports a rich variety of communication
resources, including a push/pull data-oriented mechanism.
Our goal is to evolve RoboComp towards a middleware-

independent framework, with several reference implemen-
tations. The first step in this direction is the definition of
an IDL that can act as a bridge between the IDLs of the
final middlewares and RoboComp. This new IDL provides
a syntax for construction of data types and procedures that
can be safely used inside RoboComp code without relying
on external dependencies of third party providers.

Finally, the last source of repetitive errors is related to
the deployment of components. The two main reasons are
wrong or inadequate configuration values and unresolved
dependencies found when deploying connected components.
Most of the first type of errors can be solved if configuration
parameters are described in a more structured way, including
range values definition and checking. Moreover, the planning
of a correct and safe deployment can be simplified if a
structured description language is available, along with the
necessary tools to orderly execute the involved processes.

All these issues can be easily tackled by separating the
code that can be potentially generated automatically from
the code produced by developers. This design choice makes
possible to modify the generic properties of the components
without interfering with what was manually changed since
the creation of a component. Moreover, this isolation would
facilitate the inclusion of new features that were previously
not taken into account, such as the optional use of graphical
interfaces, internal state-machines, auxiliary classes or third-
party libraries.

IV. IMPROVING ROBOCOMP WITH DSLS

We propose an MDA-based approach to mitigate the
problems presented in the previous section providing a higher
level of abstraction. In particular, our approach proposes four
DSLs: CDSL, IDSL, PDSL and DDSL. These DSLs enable
users to work with RoboComp components in an intuitive
way, improving the management of their lifecycle.

The tools developed for this purpose are based on Eclipse,
which provides a powerful framework for developing MDA-
based tools. In this vein, we have used the following Eclipse
MDA based plugins: EMF [18] (Eclipse Modeling Frame-
work) which is a basic MOF implementation; Xtext [19]
which is a framework to create textual representations and
notations from visual models and metamodels; and MOF-
Script [20], which provides a template language to perform
M2T transformations. It was decided to work with textual
model representations because it allows developers to build
their DSLs as they usually do when working with any
other programming languages, textually, and switch to visual
models when necessary. Xtext is a recent tool that facilities
the creation of new DSLs and provides some interesting and
useful characteristics such as code completion, syntax error
checking and syntax highlighting among others. Moreover,
its integration with EMF allows Xtext models to be repre-
sented as Graphical Modeling Framework [21] visual models
at any moment.

These DSLs help developers to quickly understand the
structure of a component, design it or even modify it at any
time in its lifecycle. Along with the languages, some tools

to take advantage of them have also been developed. The
RoboComp DSL Editor provides users with an Eclipse-based
tool to create and manage the proposed DSLs and integrates
MOFScript in order to generate code automatically. The
component manager, named RCControlManager, deploys the
necessary components using DDSL models.

Section V will provide a case study covering all of the
proposed DSLs and an experiment carried out to quantify
the benefits of this technology in the developing time of
RoboComp components.

A. CDSL

RoboComp provides both client/server and publish/sub-
scribe communication models. In order to establish com-
munication, components must perform different operations.
For example, if a component is required to perform remote
calls to other components, its code needs to: a) include the
definition of the proxy classes corresponding to the interfaces
it is going to connect to; b) read from the configuration file
how to reach the remote component; c) create the proxy
object using the previously read configuration; d) provide
the proxy object to the classes that will be using it. Similar
scenarios exist when providing new interfaces, subscribing
or publishing new topics (see [6] for more details). In
RoboComp, this code is automatically generated by a Python
script when the component is created for the first time.
However, until the adoption of MDA-based techniques, if
the requirements of a component changed after its creation
(a considerably common scenario), it had to be manually
done.

All these situations made it difficult to maintain several
components because their source code depends on these
parameters. To solve these problems, we have developed
a DSL to create and modify component properties. This
DSL is called Component Description Specific Language
(CDSL) and allows users to create and maintain their
component descriptions from a textual model. CDSL files
contain information about communication parameters such
as proxies, interfaces and topics used by the components,
their dependencies with external classes and libraries, the
optional support of Qt graphical interfaces, the programming
language of the component, and an optional SCXML file path
for embedding a state machine in the component.

Figure 1 shows the development process to obtain the
CDSL. First, a meta-model defining the CDSL entities and
their relations is created using EMF. Then it is automatically
translated to an Xtext grammar. Once the Xtext grammar
is created, users can create their own CDSL models using
the RoboComp DSL Editor, which performs code genera-
tion using M2T transformations. Because components need
interfaces or topics to communicate with other components,
CDSL files can import data types, topics and interfaces
defined in IDSL models (as shown in section IV-B).

The source code of the components generated from CDSL
can be divided in two parts: the specific and the generic (see
Figure 2). The generic part contains the logic of interprocess
communication, the general structure of the components

Fig. 1. Development process of CDSL, DDSL, IDSL and PDSL

Fig. 2. Structure of RoboComp components.

(e.g., main program and threads, source directory structure,
documentation rules or configuration parameters) and some
introspection and self-monitoring capabilities. This generic
functionality is implemented with abstract classes that are
inherited and extended by the user-specific code to achieve
the final working component. Thus, a component can be
divided in two parts by a line separating the generic from
the specific. The specific component code is generated by the
RoboComp DSL Editor only the first time, but the generic
code is always generated when regeneration from CDSL
models occur. This way, users can be sure that their specific
code will never be deleted and, at the same time, they are
able to modify any component property. This organization is
one of the most important design decisions. Figure 5 provides
an example of the RoboComp DSL Editor while modifying
a CDSL file.

The properties that are contemplated in CDSL are the
following:

• Component name.
• Interfaces and data types defined in external IDSL files.
• Client/Server communication model: required and pro-

vided interfaces.
• Publish/Subscribe communication model: topics that the

component will publish or subscribe to.
• Graphical interface support.
• State machine support.
• Dependences with external classes and libraries.
• Programming language of the component.

B. IDSL

RoboComp used the Ice Interface Definition Language
(Slice by ZeroC) to define component interfaces. This
language provides developers with a mechanism to cre-
ate structured interfaces regardless of the platform and
the programming language. Unfortunately, this language is
middleware-dependent, so, if RoboComp had to be integrated
with another middleware, all Slice files should be adapted.
Moreover, any change in the Slice language would require
modifying the RoboComp interfaces already defined.

To solve these problems, we developed the Interface De-
scription Specific Language (IDSL). IDSL has been initially
designed as a subset of the Slice features, mainly data types
and procedures definition, and avoiding interface inheritance,
to facilitate future transformations among third party IDLs.
Figure 1 shows the development process to obtain the IDSL,
which is similar to CDSL. First the IDSL is defined using an
EMF-based meta-model. Then the meta-model is imported to
Xtext to generate the IDSL language. Users can define their
own interfaces using the IDSL language, which is integrated
in the RoboComp DSL Editor. Finally, they can generate the
specific IDL using the code generator which is also integrated
in the RoboComp DSL Editor. Figure 9 provides a screenshot
of the RoboComp DSL Editor while modifying an IDSL file.

Currently, IDSL supports the following features:

• Interfaces and topics definition.
• Basic data types, such as integer and real numbers or

strings.
• Enumerated types.
• Custom structures and data types such as sequences and

maps.
• Exceptions.

C. DDSL

Components are independently executed programs that
interact with each other. When using a component-oriented
robotics framework, a robotic software system is composed
of several interconnected components, representing a compo-
nent network. These components can be executed manually,
but as the number of components grows, it becomes in-
creasingly difficult to manage them appropriately. Robots of
middle complexity (e.g., mobile robots equipped with stereo
heads) and high complexity robots (e.g., mobile manipulators
with expressive heads) are controlled by graphs containing
dozens of components running on several computers. The
configuration and management of these networks of pro-
cesses suggest the combination of a graphical tool and a

representation language. The Deployment Description Spe-
cific Language was developed as the underlying language to
make this management task easier.

With DDSL, users are able to describe which components
will be used, where they should be executed and which
configuration to use. This makes it possible to automatically
deploy RoboComp components in a certain computer or
computer network. DDSL has been designed to simplify the
system deployment and integration. Figure 1 shows the de-
velopment process of the DDSL. It is defined using an EMF-
based meta-model which is translated to an Xtext grammar.
Once the Xtext DDSL grammar is created, developers can
create and manage their DDSL models using the RoboComp
DSL Editor.

In order to define a component network, the following
parameters have to be specified for each component:

• Component: the CDSL file path of the component to
execute.

• Path to the executable file of the component.
• IP address and port.
• Path to the configuration file.
With the information in this file, all component depen-

dences can be precomputed. Thus, the DSL editor can warn
users of basic configuration errors while editing the file and
prior to the actual deployment.

D. PDSL

The Parameter Definition Specific Language provides a
generic structure for the configuration parameters that define
the run-time behavior of the components. This DSL guides
developers in writing the necessary configuration files in a
standardized way within the framework. The file format that
was previously used lacked of hierarchical structure, being
just a list of <attribute,value> pairs. When a component
required a nested relation of parameters, such as a list of lists,
the component had to parse the corresponding configuration
string. Figure 3 -particularly its last two lines- provides an
example of this situation.

E n d p o i n t
JointMotorComp . E n d p o i n t s = t c p −p 10067
P a r a m e t e r s
J o i n t M o t o r . NumMotors=2
J o i n t M o t o r . Hand le r = Dunkermotoren
J o i n t M o t o r . Device = / dev / ttyUSB0
J o i n t M o t o r . BaudRate = 115200
J o i n t M o t o r . B a s i c P e r i o d = 220
Motor : name , id , i n v e r t e d S i g n , min , max , zero , v e l
J o i n t M o t o r .M0 = dunker0 , A, t r u e , −3 . 1 4 , 3 . 1 4 , 0 , . 9
J o i n t M o t o r .M1 = dunker1 , B , t r u e , −1 . 7 , 1 . 7 , 0 , . 9

Fig. 3. Example of the structureless configuration file format used
previously by RoboComp.

With PDSL, the configuration parameters can be organized
in nested lists and the editor can check that the introduced
values are within the predefined ranges. After the code gen-
eration process, the component can access the configuration
information by using methods defined in the generic classes.

Fig. 4. Definition of the parameters using the PDSL

This way, the programmer can safely access and modify
the configuration values, according to their predefined value
ranges. Figure 1 shows the development process of the
PDSL. The dotted lines show that it is work in progress.

Currently, PDSL supports the following parameter types:

• Component: the CDSL file path of the component to
execute.

• Basic data types, such as integer, booleans and real
numbers or strings.

• Enumerated types.
• List types and nested lists.
• Default values.
• Optional variables.
• Range of possible values of basic and enumerated types.

V. CASE STUDY

This section presents a real case study in which three
common situations in component-oriented development are
presented: the inclusion of an additional proxy in an existing
component, the insertion of a new configuration parameter
and the inclusion of a new method into an existing interface.
These situations are framed in the following robotic context:
starting with a speech synthesis component, the goal is
to communicate it with another component that controls
a robotic mouth. The final configuration should be able
to synthesize text and to move the mouth synchronously.
Figure 8 shows all the components involved as seen from
the RCControlManager deployment utility. As introduced in
section III, before making RoboComp DSL-based, to com-
plete these changes it was required to make several changes
in the source code manually. In this section we will show
how the use of DSLs reduces the time to introduce these
changes, avoids unwanted errors in the code and improves
the user experience. The steps required to perform all the
modifications are:

• Modify the Component Description file to include a new
proxy to MouthComp.

• Include a new parameter in the Parameters Definition
file of SpeechComp to specify if the connection to
MouthComp will be used.

Fig. 5. Screenshot of the RoboComp DSL Editor while modifying the
CDSL model in the case study.

Fig. 6. Screenshot of the RoboComp DSL Editor while modifying the
PDSL model in the case study.

• Add a new entry in the Deployment Definition file to
include the component MouthComp.

• Optionally, add a new method in the interface of
SpeechComp to activate/deactivate in run-time the
mouth synchronization.

The first step to introduce an additional proxy to the
Speech component is to change its CDSL file (i.e., the file
describing the generic properties of the component). This
can be done using the RoboComp DSL Editor (see Figure 5).
After re-generating the generic code, the specific classes will
automatically have access to the new proxy (no changes in
the specific classes are needed for it).

After modifying the CDSL file, and only if the connection
to the Mouth component is going to be optional, the PDSL
file must be updated to include the corresponding variable.
In this case, we created a new boolean parameter named
mouthSynchronization as shown in Figure 6.

Once the code has been re-generated and the Speech-
Comp configuration parameters have been configured, the
component is ready to work. However, since it depends
on the execution of MouthComp, this component must be
previously executed. Deployment can be done manually, but
it is a hard task when the component network is composed of

Fig. 7. Screenshot of the RoboComp DSL Editor while modifying the
DDSL model in the case study.

Fig. 8. Screenshot of the RCControlManager tool. The three components
involved in the component network are shown. Once the user requests to
run the Speech component, its dependencies are automatically satisfied.

more than a few components. The RoboComp DSL Editor
can be used to specify different deployment scenarios. In
this case the network is composed by only three com-
ponents: SpeechComp, MouthComp and JointMotorComp
(which is a dependence of the MouthComp component).
RCControlManager, the component manager of RoboComp,
takes the DDSL file as input and manages the execution of
the components and the dependencies among them.

Figures 7 and 8 provide screenshots of the RoboComp
DSL Editor while modifying the previous DDSL file and
the RCControlManager tool, respectively.

RCControlManager reads the deployment file and gener-
ates a visual graph. Components are shown as nodes and
component dependencies as edges. Moreover, the deploy-
ment file can be generated or modified graphically using
this tool. When a new host is added, RCControlManager
checks for the availability of any known component in that
machine and shows them in a list. A deployment configura-
tion is visually created dropping components from this list.

Fig. 9. Screenshot of the RoboComp DSL Editor while modifying the
IDSL model in the case study.

Dependences may be assigned by dragging nodes over target
nodes. Deployment files are created very quickly using this
technology.

Even though it may not be actually necessary, the devel-
oper might want to include a new method in the SpeechComp
interface in order to activate/deactivate the synchronization
with the robotic mouth on-line. In this case, there are three
steps to take: a) use the RoboComp DSL Editor to include
the line corresponding to the new method (see Figure 9);
b) re-generate the IDSL file in order to obtain the new IDL
implementation; c) re-generate the SpeechComp CDSL to
include the new function in the generic code. It is very
important to note that this is the only step in which users
need to modify the specific code manually.

VI. EXPERIMENTAL RESULTS
An experiment was conducted in order to provide em-

pirical evidences supporting the claims made in the pa-
per. Twelve roboticists who were already familiar with the
framework were asked to perform five of the most com-
mon repetitive tasks they have to face when developing
and managing robotics components. In particular, they were
asked to make the following changes and operations with
an existing robotics component: a) to create a new proxy
for a given interface; b) to make the component provide a
new additional interface; c) to include a new method in the
previous interface; d) to include a new library and a new
class in the component project; and e) to deploy a small
component network.

In order to be able to evaluate the benefits of the pro-
posed approach, the experiments were performed twice: first,
using the DSL technology and then, without it. For all the
experiments two variables were measured: the time spent
performing the task and the lines of code written. In the
case of the last task (deploying a component network), the
number of commands executed where measured instead of
the lines of code written.

The data obtained from the time employed and the lines of
code written is displayed in figures 10 and 11, respectively.

Fig. 10. Graph showing the corresponding boxplots for the times associated
with the five experiments. For each experiment E.n, it is shown the time
spent with and without using the DSL (before and now, respectively).

Measurement data is represented as boxplots containing all
measurements ranging between the first and third quartiles.
The location of the median of the measurements is indicated
by a red line crossing the rectangle vertically. Measurements
outside the box are considered outliers and are drawn using
green diamonds.

Figure 10 shows the results regarding the time spent in
the experiments. It is worth mentioning that the only time
taken into account was the one in which the subject was
typing code, not thinking. Since users need less time to
think when using DSLs (i.e., there is no need to think
which code pieces should they change) this plays against
the use of DSLs. Inspite of this, it can be seen how using
the DSL approach shorter times were achieved for all of the
experiments performed.

Figure 11 shows the results regarding the lines of code
written while performing the experiments. As happened
with time, the figure shows that, using the DSL approach,
fewer lines of code were written for all of the experiments
performed. This is not a surprise, since small changes in the
DSLs might involve many changes in the generated code.
The only experiment in which no considerable improvements
were achieved (only a few seconds) was the experiment
number 3. This is because the framework was already making
use of CMake features for the operations involved in the
experiment, so the initial number of lines to modify was
already low.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper has presented four DSLs based on the MDA ap-
proach used to improve the lifecycle of robotics components:

Fig. 11. Graph showing the corresponding boxplots for the lines of code
associated with the five experiments. For each experiment E.n it is shown
the lines of code written with and without using the DSL (before and now,
respectively).

a) for specifying general component properties (CDSL);
b) for defining component interfaces (IDSL); c) for the
deployment of components (DDSL); and d) to define and
initialize component parameters (PDSL).

CDSL allows components to be created and modified
even into different languages. It reduces the workload, so
developers can center their effort in the implementation
of the behaviour of the components they are developing.
IDSL is a first step to make RoboComp independent not
only of the architecture and the programming language,
but also of the middleware. DDSL eases the deployment
stage of the lifecycle of the components. It describes a
network of components and their dependencies, as well
as where and how should they be executed. This allows
RCControlManager, the component manager of RoboComp,
to run a component network with just a mouse click. Finally,
PDSL provides a means to store the configuration parameters
of the components in a structured and less error-prone way.

These DSLs have been used on the RoboComp framework
to improve its flexibility, scalability and maintenance, making
it possible to create and manage components in a higher
level of abstraction. Moreover, developers can benefit from
M2M and M2T in order to perform transformations between
models and obtain the final source code automatically. These
DSLs have been developed as textual models in order to
reduce the development time, although they can be used in
conjunction with visual models.

All the software described in this paper is freely
available for download from the RoboComp site:
http://robocomp.sf.net/DSLRob2011.

B. Future Works
One of the limitations of many current robotics frame-

works is that they are middleware dependent. Thus, compo-
nents can only communicate with those built using the same
framework or, in some cases, those using the same mid-
dleware. Although there are some efforts towards building
bridges between frameworks, it is not clear how these bridges
will provide all the necessary functionality. To overcome
this limitation, efforts are currently being made towards
achieving middleware-independence and rely, instead, on
different reference implementations.

Despite the powerful component and configuration models
provided by RoboComp, its wide adoption could be com-
promised if it does not fit well the stringent real-time and
performance requirements of a distributed real-time embed-
ded system. In this sense, transparent support for DDS [23]
(OMG’s Data Distribution Service for Real-Time systems) is
underway and initial encouraging results have already been
published [16]. This standard addresses the need for real-time
and quality of service features in distributed applications and
is being adopted in mission and business-critical applications,
such as air traffic control, telemetry or financial trading
systems.

Another improvement we are working on is the hierar-
chical representation of groups of components. In ongoing
work, one component is automatically created to act as a
proxy for all incoming communications to the group. This
rearrangement makes a group of components appear as a
single one to the rest, at the cost of a certain increase in delay.
We believe this additional level of abstraction is necessary to
handle dozens of running components, a common situation
in future complex robotic scenarios.

REFERENCES

[1] D. Brugali and P. Scandurra. ”Component-based Robotic Engineering.
Part I: Reusable building blocks”. In IEEE Robotics and Automation
Magazine. 2009.

[2] D. Brugali and A. Shakhimardanov. ”Component-based Robotic En-
gineering. Part II: Models and systems”. In IEEE Robotics and
Automation Magazine. 2010.

[3] Douglas C. Schmidt. ”Model-Driven Engineering”. In IEEE Computer
Magazine, vol. 39, no. 2, pp. 25-31. 2006.

[4] A. W. Brown ”Model Driven Arquitecture: Principles and practice”.
In Sofware and systems modeling, pp. 314-327. 2004.

[5] Object Management Group. ”Meta-Object Facility (MOF) Core Spec-
ification”. Available at http://www.omg.org/mof/. 2010.

[6] L.J. Manso, P. Bachiller, P. Bustos, P. Nuñez, R. Cintas and L.
Calderita. ”RoboComp: a Tool-based Robotics Framework”. In Proc.
of Int. Conf. on Simulation, Modeling and Programming for Au-
tonomous Robots, pp 251-262. 2010.

[7] D. C. Schmidt, A. Gokhale, B. Natarajan, S. Neema, T. Bapty, J.
Parsons, C. Hall, A. Nechypurenko and N. Wang. ”Cosmic: An MDA
Generative Tool for Distributed Real-time and Embedded Component
Middleware and Applications”. In Information Sciences, pp. 300-306.
2002.

[8] R. W. Claus, N. Wang, D. C. Schmidt and C. ORyan, ”Overview
of the CORBA Component Model”. In Component Based Software
Engineering Putting the Pieces Together, pp 1-16. 2011.

[9] Object Management Group. ”Robot Technology Component Specifi-
cation”. In Technology. 2008.

[10] N. Ando, S. Kurihara, G. Biggs, T. Sakamoto and H. Nakamoto. ”Soft-
ware Deployment Infrastructure for Component Based RT-Systems”.
In Journal of Robotics and Mechatronics. Vol.23, no.3, pp. 350-359.
2011.

[11] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor and B. lvarez
”V3CMM: a 3-View Component Meta-Model for Model-Driven
Robotic Software Development”. In Journal of Software Engineering
for Robotics, pp. 3-17. 2010.

[12] Object Mangement Group. ”Unified Modeling Language”. In History,
pp 2921-2928. 2011.

[13] C. Schlegel, A. Steck, D. Brugali and A. Knoll. ”Design Abstraction
and processes in Robotics: From Code-Driven to Model-Driven Engi-
neering”. In In 2nd International Conference on Simulation, Modeling
and Programming for Autonomous Robots. 2010.

[14] D. C. Schmidt and S. Huston. ”C++ Network Programming Volume
2: Systematic Reuse with ACE and Frameworks”. Addison-Wesley.
2003

[15] D. C. Schmidt, A. Gokhale, T. H. Harrison, D. Levine, and C.
Cleeland. ”Tao: a high-performance end system architecture for real-
time corba”. In Communications Magazine, IEEE. 1997.

[16] J. Martinez, A. Romero-Garces, L. Manso and P. Bustos. ”Improving
a robotics framework with real-time and high-performance features”.
In Proc. of Int. Conf. on Simulation, Modeling and Programming for
Autonomous Robots, pp 263-274. 2010.

[17] M. Henning and M. Spruiell. ”Distributed Programming with Ice”,
ZeroC. 2009.

[18] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks. ”EMF:
Eclipse Modeling Framework”. In Addison-Wesley Professional, pp.
744 2008.

[19] S. Efftinge and M. Vlter. ”oAW xText: A framework for textual DSLs”.
In In Eclipsecon Summit Europe . 2006.

[20] J. Oldevik. ”MOFScript Eclipse Plug-In. Metamodel-Based Code
Generation”. In Eclipse Technology Workshop. 2006.

[21] Graphical Modeling Project. ”Graphical Modeling Framework”. Avali-
able at http://www.eclipse.org/modeling/gmp/. 2011.

[22] D. C. Burnett, J. Carter, J. Barnett, M. Bodell, R. J. Auburn and R.
Alkolkar. ”State Chart XML (SCXML): State Machine Notation for
Control Abstraction”.

[23] Object Management Group. ”Data Distribution Ser-
vice for Real-time Systems (DDS)”. Available at
http://www.omg.org/technology/documents/dds spec catalog.htm.
2007.

